Justifying the Stabilization of a Marginally Stable Ship

نویسنده

  • David Shekhtman
چکیده

As a precursor to capsize, marginal stability, resulting from incorrect loading conditions and crew negligence, poses a serious danger to ships. Therefore, as a benchmark problem for preventing capsize, the use of an actively controlled pendulum for the stabilization of a marginally stable ship was analyzed. Lyapunov stability criteria and closed loop eigenvalues were used to evaluate the extent to which a proposed pendulum controller could cope with different ship stability conditions. Equations of motion were solved to observe the controller’s performance under different damping conditions. The behavior of the controller yielded the following results: a marginally stable ship can be stabilized, as long as there is no right hand plane zero; energy dissipation is key to the stabilization of a marginally stable ship; the controller must have knowledge of the ship’s stability to prevent controller-induced excitation; and a stabilized tilted ship is more robust to external disturbances than a stabilized upright ship. Nomenclature m Ship Mass including Pendulum Mass Ixx Ship Rotational Inertia mcw Pendulum mass g Gravitational Acceleration φ Roll Angle φ̇ Roll Anglular Velocity of Ship θcw Pendulum Angle θ̇cw Pendulum Angular Velocity θcw,re f Reference Pendulum Angle broll Ship Roll Damping bpend Pendulum Damping Tpend Torque on the Pendulum Tpend,eq Pendulum Torque that Satisfies Equilibirum zg z-coordinate of the Center of Mass (COM) ρw Density of Displaced Fluid A Ship Displaced Volume BoG Distance btw. Centers of Mass and Buoyancy at φ = 0◦ BoMx Distance btw. Buoyancy Center and Metacenter GMx Metacentric Height GZ Righting Arm Lcw Length of Pendulum Lo f f Pendulum Offset k1 Nonlinear Feedforward Reference Gain k2 Linear Feedback Gain kp Proportional Feedback Gain zship Potential Right Half Plane Zero of Ship pship Right Half Plane Pole of Ship Emech Total Mechanical Energy KE Total Kinetic Energy PE Total Potential Energy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی کنترل کننده غیرخطی مد لغزشی و H_∞ غیرخطی برای پایدارسازی حرکات چرخشی رول شناور در حال سکون مجهز به عملگر ژایرو

For stabilization of zero speed ships active anti roll tanks and gyro stabilizers are used. Because of anti roll tank limitations on working frequencies gyro stabilizers are proposed. A nonlinear model for ship is used to simulate hydrodynamic forces. Wave’s disturbances are considered as non-parametric uncertainty. A sliding mode controller is used for roll stabilizing. A nonlinear h infinity...

متن کامل

Stabilization and Walking Control for a Simple Passive Walker Using Computed Torque Method (RESEARCH NOTE)

Abstract   The simple passive dynamic walker can walk down a shallow downhill slope with no external control or energy input. Nevertheless, the period-one gait stability is only possible over a very narrow range of slopes. Since the passive gaits are extremely sensitive to slope angles, it is important to use a control strategy in order to achieve a wide range of stable walking. The computed to...

متن کامل

Processing and stabilization of Aloe Vera leaf gel by adding chemical and natural preservatives

Background and objectives: Aloe vera has been used as a medicinal herb for thousands of years. Aloe vera leaves can be separated into latex and gel which have biological effects. Aloe gel is a potent source of polysaccharides. When the gel is exposed to air, it quickly decomposes and decays and loses most of its biological activity. There are various processin...

متن کامل

Stabilization and disturbance rejection for the beam equation

We consider a system described by the Euler–Bernoulli beam equation. For stabilization, we propose a dynamic boundary controller applied at the free end of the system. The transfer function of the controller is a marginally stable positive real function which may contain poles on the imaginary axis. We then give various asymptotical and exponential stability results. We also consider the distur...

متن کامل

New Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems

This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017